
Internal Carburization and Carbide
Precipitation in Fe-Ni-Cr Alloy Tubing

Retired from Ethylene Pyrolysis Service
A. Chauhan, M. Anwar, K. Montero, H. White, and W. Si

(Submitted March 23, 2006; in revised form May 10, 2006)

The events leading to the failure of an alloy grade HP Nb ethylene pyrolysis heater tubing were
examined. X-ray maps indicated that a complex oxide coating, which inhibits carbon (C) dif-
fusion, forms on the process side of the tubing during service. Phase equilibria studies predict
that even without process C diffusion, metal carbides will precipitate out of the face centered
cubic (FCC_A1) matrix. It was estimated that a 6 mm thick tube operating at 1100 °C would
completely carburize in two years if the protective coating is damaged.

Keywords CALPHAD, multicomponent diffusion, x-ray analysis

1. Introduction

Products derived from ethylene continue to displace con-
ventional materials in packaging, building, automotive, and
other applications. The demand for ethylene, one of the
highest production chemical commodities in the world, is
expected to exceed 136 million metric tons by the year
2010.[1] The production of ethylene involves the steam
cracking of feedstocks, ranging from ethane to gas oils,
inside the coils of a pyrolysis furnace.[2-4] The overall re-
action is free radical in nature and is unselective, with a
range of hydrocarbons and coke being produced as byprod-
ucts. During catalytic coke formation, the feedstock inter-
acts with the tube wall and deposits carbon (C) on the sur-
face.[5-7] Coke formation is particularly damaging to the
overall process because it accumulates on the inner walls of
the coils and eventually leads to process inefficiencies (lo-
calized increases in tube wall temperatures, poor heat trans-
fer, increased pressure drop, reduction of inner tube diam-
eter, and tube plugging) and tube failure.[8,9] The tube
failure modes initiated by catalytic coke formation are: ther-
mal shock; stress rupture; melting; thermal fatigue; and car-
burization-induced mid wall cracking.[10,11]

The production of ethylene is one of the most energy-
intensive processes in the chemical industry because fur-

nace tubes must be decoked every 10 to 80 days (depending
on feedstock, furnace type, and severity of operation) to
preserve tube life.[12,13] Decoking is started with steam after
lowering the temperature to about 800 °C and is continued
with a steam-air mixture up to about 1100 °C.[14] The com-
bination of in-service operation and decoking cycles have
reduced the tube life of outlet coils by four to six years.[15]

High-temperature pyrolysis of hydrocarbons has been prac-
ticed for over a half century and still ethylene producers
worldwide currently consume $600 million per year of iron
(Fe)-nickel (Ni)-chromium (Cr) alloy tubular products. The
market is typically 80% maintenance or retubing of existing
furnaces and 20% new installations.[1]

Researchers have attempted to limit coke formation in
ethylene pyrolysis coils (i.e., increase tube life) by add-
ing small amounts of a variety of inhibitors to the feed-
stock[5,16-20] and by changing or altering the materials of
construction.[5,18-25] The challenge has been developing a
material with sufficient high-temperature (∼1100 °C) creep
strength, sufficient ductility at 1100 °C to withstand in-
service stresses, and sufficient ductility below 700 °C after
service aging to withstand startup and shutdown stresses.
Cast and wrought materials have been designed with spe-
cific chemistry in the range of 20 to 35 wt.% Cr, 20 to 45%
Ni with the balance typically consisting of Fe plus other
important alloying elements such as C, niobium (Nb), W,
Ti, Al, Zr, and Mo. Jones[26] compared the wrought (low C)
and centrifugally cast (high C) tube materials, and found
that the centrifugally cast alloys only satisfy the first two
design criteria while the wrought materials suffer from
creep damage while in service.

This study presents diffusion-, precipitation-, and phase
equilibria-related phenomena of alloy grade HP Nb, a cen-
trifugally cast austenitic microalloyed Ni-Cr-Fe alloy
[0.45wt.%C-∼1.5wt.%manganese (Mn)-∼2.2wt.%silicon
(Si)-35wt.%Ni-25wt.%Cr-1.2wt.%Nb-balFe] decommis-
sioned from ethylene pyrolysis service.

2. Experimental

HP Nb tubing (250 mm in length × 120 mm in diameter
× 6 mm in thickness) removed from an ethylene pyrolysis
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plant during a scheduled retubing was supplied by ABB
Lummus Global Incorporated (Bloomfield, NJ). A 12 × 12
× 6 mm section of the tubing was removed and mounted in
cross section in a vacuum-impregnated epoxy. The sample
was prepared using standard metallographic specimen
preparation techniques and examined (with energy-
dispersive spectroscopy, x-ray mapping, and backscatter
electron micrographs) using the LEO 1550 Shottky field
emission gun-scanning electron microscope at Stony Brook
University. Phase equilibria studies were performed using
Thermocalc and the TTNi Database.[27]

3. Results and Discussion

3.1 Diffusion and Precipitation Phenomena

Several researchers have proposed models and have pro-
vided explanations for the carburization of pyrolysis tub-
ing.[14,28-38] Goldstein and Moren[28] studied the diffusion
of C in the ternary Fe-C-M systems (where M � Cr, Si, or
Mn) utilizing Fick’s second law for a ternary system to
describe the diffusion process.

dCC

dt
= DCC

Fe
�2CC

�x2 + DCM
Fe

�2CM

�x2 (Eq 1)

dCM

dt
= DMM

Fe
�2CM

�x2 + DMC
Fe

�2CC

�x2 (Eq 2)

In these equations, C is the concentration of carbon and the
metal M (i.e., Cr, Si, or Mn); DMM and DCC measure the
effects of the concentration gradient of a given component
on its own flux, and DMC and DCM measure cross effects or
ternary diffusional interactions. They further stated that
DMM is negligible because it diffuses via substitutional
mechanisms (its value should be 104 to 106 time less than
DCC, which diffuses via interstitial mechanisms); DMC is
small (�0); and DCM and DCC can be estimated using an
expression proposed by Brown and Kirkaldy.[39] This study
did not include stainless steel compositions and did not
consider the effect of carbide precipitation on C diffusion.
Bongartz et al.[40] and Zhu et al.[41] developed models for
carbide precipitation events during the carburization pro-
cess. These studies: coupled the effects of C diffusion and
carbide precipitation; considered as separate entities of C in
the matrix and in the carbide; only allowed the C in the
matrix to diffuse; and allowed carbide precipitates to serve
as obstacles that slow down the carburization process.

In the current study, a complex oxide protective coating,
which formed on the HP Nb alloy surface in service pre-
vented the diffusion of C into the material from the process
stream. Figure 1 shows a backscattered electron image and
x-ray maps of the HP Nb alloy prior to service. The x-ray
maps indicate that all elements [C, Cr, Fe, Nb, Ni, Si, and
oxygen (O)] are uniformly distributed in the matrix. The
Fe-Si-Nb-Cr collage shows traces for Cr carbide that exist
in the matrix. The large concentration of C at the surface is
due to the sample preparation consumables.

Figure 2 shows backscattered electron images and x-ray
maps of the diffusion and carbide precipitation behavior of
HP Nb tubing that was decommissioned from ethylene py-
rolysis service during a schedule retubing. While in service:
Cr oxide forms at the surface; Si oxide forms beneath the Cr
oxide surface layer; metal carbides (mostly Cr) precipitate
in the bulk; and Fe, Ni, and Nb remain uniformly distributed
in the matrix.

3.2 Phase Equilibria Predicted by ThermoCalc[42,43]

Isothermals (900, 1000, 1100, and 1200 °C) of the seven-
component C-Mn-Si-Ni-Cr-Nb-Fe system are shown in Fig.
3. Because the inlet and midsection tube metal temperatures
are typically between 900 and 1000 °C, the outlet tube metal
temperature is typically between 1000 and 1100 °C, and
localized regions where coke deposits exist could reach
temperatures of ∼1200 °C; the selected isotherm for the
multicomponent system can be used to predict the internal
carburization and carbide precipitation behavior of the tub-
ing. Table 1 summarizes these features.

At 900 and 1000 °C, M23C6 and � initially exist in the
FCC_A1 matrix (Fig. 3 at 0.45% C). As internal carburiza-
tion proceeds (green dotted line), M23C6 and M7C3 will
initially coexist (Fig. 3 at for instance 2% C), and eventually
M23C6 will convert to M7C3 (Fig. 3 at higher C percent-
ages). Bongartz et al.,[40] Zhu et al.,[41] and Christ[44] have
proposed the following equations for the formation of
M23C6 and M7C3, and the transformation of M23C6 to
M7C3.

16Cr + 7Fe + 6C = Cr16Fe7C6 (Eq 3)

7Cr + 7Fe + 6C = 2Cr3.5Fe3.5C3 (Eq 4)

54C + 7Cr16Fe7C6 + 63Fe → 32Cr3.5Fe3.5C3 (Eq 5)

A similar situation exists at higher temperatures, with the
only difference being an increase in the amounts of C and
Cr that exist in the FCC_A1 matrix (see the tie-line through
3% C on each phase diagram). The maximum amount of
C-Cr in the FCC_A1 matrix that can exist prior to graphite
precipitation can also be determined from the phase dia-
grams (see location marked “*” on each of the phase dia-
grams and Table 1). Using these values and an expression
that describes the depth of the internal carbide formation
zone,[45] a rough estimate can be made of the time required
for through-wall carburization (Eq 6).

t =
x2 * � * CCr

2 * � * DC * CC
(Eq 6)

In this equation, � is a stoichiometric factor, CCr is the Cr
content in the FCC_A1 matrix before graphite starts to pre-
cipitate, CC is the C content in the FCC_A1 matrix before
graphite starts to precipitate, x is the tube wall thickness, DC
is the C diffusivity (∼10−7 cm2/s from Nishiyama et al.[46]),
and � ranges from 0 to 1. For values of � < 1, carbide
formation slows the diffusion of C into the matrix.[47] Con-
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sidering that carbides will impede C diffusion (� � 0.5):
DC � 10–7 cm2/s; � � 3; x � 6 mm; and CC and CCr values
can be obtained from Table 1 (C-Cr content in FCC_A1
before graphite starts to precipitate). The estimated time for
complete through-wall carburization of HP Nb tubing that
has been exposed to ethylene pyrolysis service at 1100 °C
was determined to be approximately two years.

4. Conclusions

An austenitic heat-resistant alloy, HP Nb, which was
removed during a scheduled retubing from an ethylene py-
rolysis furnace, was examined. X-ray maps indicated that Cr
and Si segregate to the surface to form a complex oxide
coating, which prevented process C diffusion; beneath the

Fig. 1 Backscatter electron image (top) and x-ray maps (C, Cr, Fe, Nb, Ni, Si, O, and collages) of HP Nb tubing prior to service. All
elements are uniformly distributed in the matrix. The large content of C at the surface is due to the sample preparation consumables.
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protective layer, Cr is depleted from the FCC_A1 matrix;
and the bulk metal carbides (mostly Cr) precipitate out of
the FCC_A1 matrix.

Phase equilibria predicted by ThermoCalc showed that:
even without process C diffusion metal carbides (M23C6)
will exist in the FCC_A1 matrix; if the local internal C

content increases, M23C6 readily transforms to M7C3 type
carbides; and if process C diffusion occurs (i.e., oxide
layers are damaged as described by Smith et al.[45]), Cr will
be depleted from the FCC_A1 matrix and complete carbur-
ization of a 6 mm tube wall can occur in approximately two
years.

Fig. 2 Backscatter electron image (top) and x-ray maps (C, Cr, Fe, Nb, Ni, Si, O, and collages) of HP Nb tubing removed from ethylene
pyrolysis service during a scheduled retubing. The C is from the metallographic mount; Cr segregates to the bulk in the form of carbides
and to the surface in the form of oxides; Fe, Nb, and Ni are uniformly distributed in the matrix; and Si and O are found near the surface.
Cr oxide and Si oxide protective layers effectively prevented process C diffusion.
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Table 1 HP Nb phase equilibria predicted by ThermoCalc

Phases 900 °C 1000 °C 1100 °C 1200 °C

Initial phase present 0.45 wt.% C FCC_A1 + M23C6 + � FCC_A1 + M23C6 + � FCC_A1 + M23C6 FCC_A1 + M23C6

Phases present at local 2 wt.% C FCC_A1 + M23C6 + M7C3 FCC_A1 + M23C6 + M7C3 FCC_A1 + M7C3 FCC_A1 + M7C3

Phases present at local 3 wt.% C FCC_A1 + M7C3 FCC_A1 + M7C3 FCC_A1 + M7C3 FCC_Al + M7C3

C content in FCC_A1 at 3 wt.% C ∼0.05% ∼0.1% ∼0.15% ∼0.2%
Cr content in FCC_A1 at 3 wt.% C ∼7.5% ∼10% ∼12% ∼13.5%
C content in FCC_A1 before graphite precipitation ∼0.2% ∼0.35% ∼0.51% ∼0.7%
Cr content in FCC_A1 before graphite precipitation ∼2.5% ∼3% ∼3.2% ∼4%

Fig. 3 Phase equilibria predicted by ThermoCalc of HP Nb at 900, 1000, 1100, and 1200 °C. In all cases, as the C content in the material
increases (green lines), M23C6 will eventually transform into M7C3. *, C and Cr content in which graphite starts to precipitate. At 1200 °C,
melting may occur in the C-Cr content where graphite starts to precipitate.
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